L ecture 14. Mathematical Models Cont’d
1 Structure of the Atmosphere

1.1 Vertical structure of the Atmosphere
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1.2 General Circulation

Subpolar Polar high
low

Dry conditions FIGURE 7-24 Simplified illustration of thi
see-saw pattern of atmospheric pressure
between the eastern and western Pacific,
called the Southern Oscillation. (a) During
average years, high pressure over the east
ern Pacific causes surface winds and warn
equatorial waters to flow westward. The
result is a pileup of warm water in the
western Pacific, which promotes the lowe
ing of pressure. (b) An El Nifio event begil
as surface pressure increases in the west-
ern Pacific and decreases in the eastern
Pacific. This air pressure reversal weakens,
or may even reverse the trade winds, and
results in an eastward movement of the
e warm waters that had accumulated in the
Dry conditions : ! western Pacific.

(a) Normal years

(b) El Nifo years

Forecasting of EI-Nino by GFDL model:



http://www.gfdl.noaa.gov/products/vis/images/gallery/el-nino_la-nina.mov

1.3 Scales

e Large Scale (Macroscale, global scale, synoptic scale)
Trade winds, Rossby, Walker, ENSO, NAO, etc.

e Medium Scale (M esoscale, regional scale)
Sea-breezes, mountain circulations (foehns, Mistral), etc.

e Small Scale (Microscale, local scale)
Heat islands, internal boundary layers, tornadoes, etc.

2 Primitive Equations

2.1 Equation of State
Equation of stateis

p=pRT,
where p isthe pressure [N.m?], pistheair density [kg.m™], R= 287 [Jkg1.K"
' isthe gas constant, T, is the virtual temperature [K] given by

T, = (1+0.61q)T

where T is the absolute temperature [K], and q is the specific humidity. The
specific humidity q is expressed as the ratio of mass of water vapor m,, and the
mass of moist air m,, and is related to the mixing ratio of water vapor MR by

m,
m,_ m, _ MR

_ my, _
m, m,+m, 1+% 1+ MR
d

q:

NB. Therelative humidity is defined as the ratio of the partial pressure of water
to its saturation vapor pressure at the same temperature, but as g is generally
prognosed in models RH is calculated as RH=q/qs(T). A formula proposed by
Buck (J. App. Meteor., 1527-1532, 1981) is



E,, = 6.1121* (1.0007 + 3.46x10°° p) exp( 17.502xT )
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where p isthe pressure [mb], and T the temperature [Celsius]

The concentration of air molecules can be calculated from the equation of state.
For standard atmospheric conditions (T=298°K and p=1.01325x10° [N.m?])
and using R=8.314 [N.m.mol™%.K™!], the concentration c is given

byc= p _ 101325 _ 2.463x10*[molec.cm™]
RT 8.314x298

2.2Momentum eguation

In aninertial reference frame attached to the Earth, Newton’s second law of
may be written as (cf. Holton, An introduction to dynamic meteorology,
Academic Press, 1979):

N 5Gxu-1Vp+g+F

ot P

Where uisthe wind vector [m.s], - 1§p isthe pressure gradient force, pis
Yo

the air density [kg.m®], Qxuisthe Coriolisforce, Q (Q=7.292x10°) [sr.s}] is
the vector of the angular velocity of the Earth’ srotation, g is the effective
gravity (centrifugal+gravity), F. isthe friction force.

g )

A

For a system of coordinates (x,y,z) fixed at the Earth’s surface, and related to
the longitude 4 and latitude ¢, the components of the Coriolisforcein the

zonal (x), meridional (y), and vertical (2) directions are



2Qvsing — 2Qwcosg
—2Qusing
2Qu cosg

By neglecting the second term of the first expression and the third expression,
the equations of motion are

ou ou ou ou 10op
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where f, =2Qsing isthe Coriolis parameter.

Geostrophic approximation considers that the pressure field is balanced by
horizontal velocity (which isvalid for synoptic scale systems in mid-latitude),
and is expressed by

— fCVz—l@, fCUz—l@

p OX p oy

Hydr ostatic approximation considers that the pressure at any point is simply
egual to the weight of a unit cross-section of air above that point, and is
expressed by

dp = —pgdz

2.3 Thermodynamic eguation

The thermodynamic equation is obtained from the total derivative of the
eguation of state:

Cp M = ﬂ
at T
Where ¢,=1004 [Jkg*.K™] is the specific heat at constant pressure,
0=T(p,/ p)~ “isthe potential temperature [K], R=287 [J.K'.kg™] isthe gas
constant, pp=1000 [hPa] is a pressure of reference, T is the absolute

temperature [K], and disthe rate of heating per unit mass due to radiation,
conduction, and release of latent heat.

2.4Mass conservation

The conservation of air mass is expressed by the continuity equation in its flux
form by



op -
—+Ve(pu)=0
- (pu)

By using the equality V e (pu) = ue Vp + pVu, the continuity equation can be
expressed by itstotal differential form

90 _ 0 GeVo=_ VU

e at,o+u Vp=—-pVu

2.5Tracer equation

The mass balance of atracer i is given by the atmospheric diffusion equation
where the transport is decomposed into advection and diffusion:

aaitw V(c.u) = VKVC +(P-L)

where K is the tensor of diffusivity, P isthe production term, and L isthe
loss term. The equation is generally expressed for aerosols in term of mass
mixing ratio v = c /p, which isequal to the ratio of aerosol concentration ¢

and air density p,

2.61nitial and Boundary conditions

The solution of the partial derivatives equations for momentum,
thermodynamics and tracers require the specification of theinitial and
boundary conditions.

Theinitial condition (I.C.) consists to specify the three-dimension
distribution of all prognostic variables at time t=0. If theinitial valueis
unknown, avery low value is generally imposed (“ cold-start”) and the
model isrun for a period long enough to have the solution the least
influenced by theinitial condition. This length of the simulated period
influenced by the IC is called spin-up time, and is generally discarded in the
analysis of the model results. The final distribution can be saved and used as
warm-start initial condition for subsequent simulations. For transport of
aerosols, the lifetime in the troposphere is about 2 weeks, which means that
the spin-up time should be at least 2 weeks. However, if one wants to study
aerosol in the upper troposphere or lower stratosphere, a one year spin-up
timeis necessary. For General Circulation Model with coupled atmosphere-
ocean models, the spin-up time is several hundred years.



The boundary condition (B.C.) consists to specify either the prognostic
variable and/or its flux through the boundaries of the domain. For global
atmospheric models, there are 2 boundaries: at the model top (generally in
the upper stratosphere) and at the Earth’s surface. For regional models, there
arein addition 4 lateral boundaries.

L ateral boundary conditions
Generally the pragmatic view istaken that if the lateral boundaries are
located far enough away from the region of interest, the errors introduced at
the boundaries will remain within some acceptable tolerance in the interior
of the domain during the simulation period.
There are five types of boundary conditions that can be used:

1. Fixed
These are the simplest boundary conditions that can be applied. All the
prognostic variables at the boundaries are specified initially and remain
constant with time. These boundary conditions are useful for some
theoretical studies.

2. Time-dependent:
The prognostic variable at the boundaries are specified as a smoothly
varying function of time and are obtained either from observations, large-
scale model simulations, or linear solutions. If the specified values are not
consistent with the values near the boundary predicted by the model physics,
noise in the ssmulated variables will develop near the boundaries.

3. Time-dependent and inflow/outfl ow-dependent
These open boundary conditions allow waves to pass out of the domain.
They usually produce smooth solutions.

4, Sponge
The sponge boundary conditionsis given by

(%aj - W(”)(%aj +(@- W(ﬂ))(%“} where « represents any variable, the

subscript MC denotes the model -cal culated tendency, an LSthe large-scale
tendency, which is obtained either from observations or large-scale model
simulations, and n is the number of grid points from the nearest boundary
(n=1 on the boundary) . The weighting coefficients w(n) vary from0to 1 as
n increases (from 1 to typically 4).

5. Relaxation
The relaxation boundary condition involves “relaxing” or “nudging” the
model-predicted variables toward alarge-scale analysis or observations. The
method includes a Newtonian and diffusion term



[aa_(:j =F(F(ais —aye) - F(n)szz(aLs — )

Where F decreases linearly from the lateral boundary

F(n) = (ﬂj n=234
3
F(n)=0 n>4
2
And Flziand F, = as
10At 50At

Surface boundary conditions

The boundary condition at the surface is generally expressed in terms of
turbulent flux. If we separate any variable « into amean value z and a
perturbationa” such that o = @ + «"and «" = 0, then the turbulent fluxes at the
surface of the prognostic variables are written by the following expressions:
(W'—u")s = Cm|Vl|

(W)s = Cm|vl|

(W), =C, (6, - 6,)

(W'_q")s = Ch (qs - ql)

(w'e”), =Cy(Cs —¢)

where C,, and C;, are the exchange coefficient for momentum and heat,
respectively. The subscript sindicates value of variable at the surface and the
subscript ; indicates values of variable at the lower model level.
vi|,6,,0,,c,are the wind speed, the potential temperature, the specific
humidity, and atracer (e.g. aerosol) concentration at the lowest model level.

The coefficients C,, and C,, are parameterized as a function of the surface

roughness z,, the Richardson number Ri, among others variables. A complete

description is given by Stull, An introduction to boundary layer meteorology, Kluwer
Academic Press, 1988.

SURFACE TEMPERATURE

Over land the surface temperature is computed from a surface energy budget
C, aaTtS =R -H,_ -H_-LE,

Where Cy isthe thermal capacity of the ground per unit area [AmZK7], R,

the net radiation, H;, the heat flow into the ground, Hs the sensible heat flux

into the atmosphere, L, the latent heat of vaporization, and Es the surface

moisture flux.

1) Net Radiative Flux Rn




Radiation is the driving force of the diabatic planetary boundary layer,
and it has two components R, =Q, + 1 where Qs and | are the net
shortwave and longwave irradiances at the surface.
The amount of solar radiation absorbed by the ground is given by
Q, =tF,(1-R)cosy,
where t = exp(-7) + o(1- B)(1- exp(-7)) IS the transmitted solar radiation
at the surface, Fy=1396 W.m™ the solar constant, R; the surface
albedo, y,isthe solar zenith angle (cf. Lecture 4).
The net longwave radiation | is equal to the sum of the outgoing (1 1)
and downward (1 J) longwave radiation. The outgoing longwave
radiation is
| T=c,04T)
Where ¢, isthe ground emissivity (typical 0.9to 1), T, isthe ground
temperature, o, =5.671x10° W.m?2K ™ is the Stefan-Boltzmann
constant. The downward longwave radiation absorbed at the surfaceis
| = ¢ 6,05
Where T; is the atmospheric temperature at the lowest model level
¢, 1sthe atmospheric longwave emissivity and can be approximated
by the relation
£, =0.725+0.17l0g,, w,
Where w;, is the precipitable water in centimeters.
For cloudy sky, the attenuation of shortwave radiation by cloud is
parameterized with absorption and scattering transmissivities.
2) Heat Flow to the ground
The transfer of heat due to molecular conduction is calculated from
the equation
H,=CCy(Ty - T)
Where C;, is the heat-tranfer coefficient, C, the heat capacity of the
ground, Tsis the surface temperature, and T, the ground temperature.
3) Sensible heat flux
The surface heat flux isgivenby H, = p,c,,.C.C,.(6, - 6,)|Vv,|
4) Surface moisture flux
The surface moisture flux is E, = p,C,C,M (ds(T,) — o,)|v4|

The sea surface temperature (SST) is generally prescribed based on
observations for example the Reynolds and Smith dataset.




SURFACE SPECIFIC HUMIDITY

The specific humidity at the surface can be estimated from the relation
qy = a'q,(Ty) + A-a)q,

Where g4(T,) isthe specific humidity at saturation, o is the specific

humidity at the lowest model level, and «o'= min(],%) with wy the soil
k

porosity and wy the soil water content. The value of w is obtained from the

following equation
%:_C (Eq —Pe) _c (W, —w,)
ot topd i 2
Where E; is the evaporation rate at the surface, P, is the precipitation rate,
Wy is the groundwater content, and w, is the mean value of the groundwater,

p,, 1sthe water density, C;=0.1 and C,=0.9, dg is the maximum depth of
diurnal variation, r,=86400 s.

2.7 Tracer equation in generalized coordinates

Due to Earth sphericity, atmospheric models are expressed into curvilinear
coordinates instead of Cartesian coordinates (e.g. spherical). For regional
models, the equations are projected into a Cartesian grid. By using
conformal mapping, asimple scaling factor is used which allowsto easily go
from one coordinate system to the other, once the equation as been
expressed in generalized coordinates.
Criteriafor selecting a transformation of coordinates:

1. Higher resolution in the studied area (to represent properly all orders

of derivatives)
2. Axisof coordinates aligned with flow (to avoid cross derivatives)
3. Movethe lateral boundaries far away from the studied area (to avoid
contamination of the solution by the B.C.)

4. Simplicity of equations (reduce computing time)

The Following figure shows the stereographic projection of an hemispherical
grid which was used to study the effects of long-range transport of pollutants
from Asia and North America on the background atmosphere of Hawaii.



T

The continuity equation of atracer of mass mixing ratio y in curvilinear
coordinatesis given by

2(Gpw)+ Y- (Gpuy ~Gp(K + V), p) =P-L

Where pistheair density [kg.m-3], v, =%isthei component of the wind

Vector, K is the tensor of diffusi on, G= det[%] IS the Jacobian of the

aq;
transformation of coordinates from Cartesian x; to curvilinear g
If v isthe mass mixing ratio of an aerosol, the mass of this aerosol within a
volumeV isgiven by
M = [ Gpyda,da,da
Such that the time variation of M is given by
oM 0 3,0 =
— = |5 (Grv)dadada, =- [ 2 aq (@ ~Cp(K +V),y)doydl, o
By applying Stokes' theorem, this last volume integral reduces to the surface
integral of the flux of aerosol:
oM - - =
— = " JGow -GpK eVy)
In order to transform the coordinates we need to specify the matrix of

transformation of coordinates[T]= [%J , then calculate its determinant

i



G= det[%} and itsinverse[T]" = (g%j . The components of the wind vector
j !

in Cartesian coordinates u; are related to the curvilinear wind
componentsu, = Siuk , aswell asthe tensor K, in Cartesian coordinatesis
Xk

. - . ~ - 0q.
expressed in curvilinear coordinates as K;; =Y K, gi%.
K X OXy

Vertical coordinate systems

The vertical coordinate can be space-based (height or depth with respect to a
reference surface) or mass-based (pressure, density, potential temperature).
Hybrid coordinates with a mass-based element are considered to be mass-
based.

The reference surface isadigital elevation map of the planetary surface.
This can be a detailed topography or bathymetry digital elevation dataset, or
amore idealized one such as the representation of a single ssimplified
mountain or ridge, or none at all. Vertical coordinates requiring a reference
surface are referred to as terrain-following (e.g s) and are commonly used.

The pressure-based & coordinatesis defined as
O'(Z) — p(X! Y, Z!t)_ pt _ p- pt

p(xyt)-p. P
where ps and p; are the surface and top pressures, and p;is a constant.

O p=pt 1.

Table 13.1 Conversion scaling factors for vertical coordinate systems.



Coordinate system m, Vertical coordinate
Altitude 1 dz
Pressure %) dp

Sigmac = (p-p)/p’ P9/ p do

HYBRID: When the model covers the troposphere, the stratosphere, and
eventually the mesosphere, a hybrid system () is used instead of sigma
(o). With a 5 coordinates, near the Earth’ s surface model levels are defined
only by the terrain-following sigma coordinate. In upper model layers, well
above the topography, the coordinate surfaces may coincide with constant
pressure surfaces. In between thereis a slow transition from sigmato
pressure. The vertical coordinate is defined by areference profile of pressure
Po and sigmaleta values , at the half-model levels. The pressure at half

levels can be computed from the surface pressure ps as P =P .+7n 1Py
+— +5 +5

2

For sigma coordinates. p, = p,. For eta coordinates, p, =#,.p, and 3
conditions should be met: 1) », =0; 2) n 1=1 3) P, e = 0. If thereare N
1 x

2
model levels, then pressure is computed at half levelsfrom p, to Poa The

> =

rface

reference pressures are computed by P 1=Pop-7 1)
+E +§

Horizontal coordinate systems

Horizontal spatial coordinates may be polar (4,4 ) coordinates on the sphere,
or planar (x,y), where the underlying geometry is Cartesian, or based on one
of several projections of a sphere onto a plane. Planar coordinates based on a
spherical projection define a map factor allowing atrandation of (x,y) to

(2.4)-

Horizontal coordinates may have the important properties of orthogonality

(when the Y coordinate is normal to the X) and uniformity (when grid lines
in either direction are uniformly spaced). Numerically generated grids may
not be able to satisfy both constraints simultaneously.

A third type of horizontal coordinate often used in this domain is not spatial,
but spectral. Spectral coordinates on the sphere represent the horizontal
distribution of avariable in terms of its spherical harmonic coefficients.




These coefficients can be uniquely mapped back and forth to polar
coordinates based on Fourier and Legendre transforms, yielding uniformly
spaced longitudes, and latitudes defined by a Gaussian quadrature.

1. Spherical coordinates

We select (X, y, 2) asthelocal Cartesian coordinates, with x pointing East, y
pointing North, and z the altitude above sea-level. We select a curvilinear
system of coordinates with g, = 4 the longitude (positive to the East),

q, = ¢ the latitude (positive to the North), and g, = o defined above.

The Cartesian coordinates are related to the spherical coordinates as follow:
dx =r, cosg di

dy =r.d¢
dz = —idp
A9

1
=——[(p, - p,)do + odp, ]
r9

Ps — B da—i%di—i%d¢—i%dt
9 pg oL pgop " pg ot
The matrix [T] is given by

r, COS¢g 0 0
[Tl=| o ry 0
cd o _p

PI oL pgop g
Anditsinverseisgiven by

1 0 0
r, COS¢g
[T]* = 0 ri 0
_Ualnp _Galnp —ﬁi
oX oy p
The Jacobian of the transformation is given by

G=de| 2 |- —rezicos¢
aq; ~9



The wind components (4,4,6) in the coordinates system ( 1,¢4,0) are related

to the wind components (u, v, w) by the following relations:
1

A= u
r, COS¢
§=+v
re
o":—aaln P _Galnp u—awv—ﬁiw
ot OX oy p

Some assumptions are generally made for the tensor of diffusion:
1. Itissymmetrical
2. The off-diagonal terms are negligible away from the tropopause and
mountainous terrain.
With such assumptions, we get

K11 = K11

* \ 2 +\ 2 2
~ oln oln
o2 (25} (),

Therefore, the continuity equation of an aerosol of mass mixing ratio v is

given by

piﬁ(p )+ ?—uo )+ #@(p cos¢vw)+—(aw)—P L
10 e, Wyu L2 v, 2 (pa), v
+p ox (p'K ) 0 co¢6'y(p Cosg K, ) (( ] 3380')

Multiplying this equation by p* and using K_ =K, = (%J K., , the equation
becomes:

§<p*w)+3<p*uw>+ii<p* cosgvy) + p*i«'n//) —p'(P-L)
Cos¢ oy

9 dyy, 1 90 Wy o Ok ¥
+ (p 1 X) COS¢8y(p cosp K, ay) p (K 80')

3. Conformal projection
The horizontal scale factor (m) is defined as the ratio of the distance on the
grid to the corresponding distance on the Earth’ s surface. The projection is



conformal if the scaleisequal in all directions about a point so that the shape
of geographic features on Earth is preserved. The following projections are
preserved and the latitude of intersection between the plane of projection and
the Earth isg, .
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c) Lambert conformal: The Lambert conformal grid istrue at latitudes 30° and 60°N
so that m=1 at these latitudes.
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For conformal projection the matrix of projection is given by



l0 0

m

1
Til=| 0 — 0
M=o o ©
ooi
£9

And the determinant G isgiven byG = -~ P

m- o9
The continuity equation for atracer of mixing ratio y isthen given by

op'y :_mz{ap uy/m  op Vw/m}_ PV, e 1)+D,
ot oX oy oo

Similarly, the momentum and thermodynamic equations are given by (for
detailed derivation of the equations see Zdunkowski and Bott, Dynamics of

the Atmosphere: A course in theoretical meteorology, Cambridge University
Press, 2003):

op'u
ot

N

=-m

op uu/m+ dp'vu/m| dp UO'_mp*{gaL+a¢

|+ p fyv+D,
oX oy | oo p OX  OX

op'v ) apuv/m+apvv/m _8pVO-_m* EaiJr% _p'f.u+D,
ot OX oy oo p oy oy

+ p*l+ p*i+ D,
oo C, C,

opT e op'uT/m s op'vT/m ~ opT o
ot OX oy

where m isthe map scale factor, p* = p, - p,, (u,v,w) are the three
components of the wind vector, Aisthelongitude, ¢ isthelatitude, f. isthe

Coriolis parameter, fq is the adiabatic heating, the D terms represent the
vertical and horizontal diffusion terms and vertical mixing due to the
planetary boundary layer or dry convective adjustment,

c, = C, (1+0.8q,) where ¢, us the mixing ratio for water vapor and ¢y isthe

heat capacity for dry air, and y is the mass mixing ratio of tracer. The

vertical component of the wind vector is given by
RS-
W=p o+o pm
Surface pressure

op _ e op’ U/m+ op v/m| op o
ot oX oy oo



whichisused in itsvertically integrated form
op _ —mzlj p u/m+ op v/m do
ot OX oy
and then the vertical velocity in o -coordinates, cis computed by vertical

integration
o= —i]‘{a£+ mz(ap u/m+ P V/mﬂda
p ol ot OX oy
The hydrostatic equation is used to compute the geopotential heights from
the virtual temperature T,,

-1
o _ _RT{H A + }

oIn(o +p,/p’)
Where T,=T(1+0.608q,) isthe virtual temperature, and g, and g, are the
mixing ratios of cloud water and rain water.

0

Non-hydrostatic Model
For non-hydrostatic model, the pressure, temperature and air density is
decomposed into a constant reference state and perturbations, such as
P(X, Y, Zt) = Po(2) + P'(X. Y, Z1)
TXY,z2t) =Ty (2)+T'(X,y,zt)
P, Y, 2,t) = po(2) + p'(X, Y, Z,1)
With the full pressure at agrid point givenby p=po+p, +p'
In general for model grid > 10 km the hydrostatic approximation is valid.

Nudging

The method of Newtonian relaxation or nudging relaxes the model variables
toward observations by adding to the prognostic equations, artificial
tendency terms based on the difference between the ssmulated and observed
values of the same variable. The model solution can be nudged toward either
gridded analyses or individual observations during a period of time
surrounding the observations. The predictive equation of variable «(x,t)
with anudging term is given by

%—?: Fla,x,t)+G, x &, (X)x(a, - )

Where G, isthe nudging factor which determines the relative magnitude of
the term to all the other model processesin F, ¢, (x)isthe observation
quality factor (0to 1), ,isthe observation.



The nudging contribution is artificial; therefore it should not be the dominant
term in the governing equations. It is scaled by the slowest physical process

in the model and must satisfy the numerical stability criterionG, < i.

If ¢, (x)=1then

aa_? =G, (a, - a)
which has the solution a(t + At) = &, + (a(t) — &,)e " where «(t)isthe
solution at theinitial timet. The model solution approaches the observation
exponentially with an e-folding time of T, =1/G, . Thisimpliesthat high
frequency fluctuations in the observations are generally not retained except
for high values of G, ; but then the nudging term may not be small compared

toF.



